МАТЕМАТИЧЕСКИЙ АНАЛИЗ

3-4-й семестры

9. Основные понятия теории меры

Множества и операции над ними. Системы множеств. Конечные меры на системах множеств. Внешняя мера. Продолжение меры по Лебегу и по Жордану. Мера Бореля. Меры Лебега—Стилтьеса. Сигма-конечные меры. Мера Лебега на \mathbb{R}^n . Непрерывность и полнота меры. Неизмеримые множества. Прямые произведения мер. Структура измеримых множеств. Измеримые функции. Сходимость по мере и ее свойства. Сходимость почти всюду.

10. Интеграл Лебега

Интеграл Лебега для простых функций. Интеграл Лебега для произвольных измеримых функций. Переход к пределу под знаком интеграла Лебега. Дальнейшие свойства интеграла Лебега. Сравнение интеграла Лебега с интегралом Римана. Теорема Лузина. Теорема Радона—Никодима. Сигма-аддитивность прямого произведения мер. Теорема Фубини. Кратный и повторный интегралы. Следствия из теоремы Фубини. Принцип Кавальери. Третья проблема Гильберта (постановка и результаты). Замена переменных в кратном интеграле. Инвариантность интеграла и меры Лебега относительно замены декартовой системы координат. Переход к полярной системе координат. Неравенства Гельдера и Минковского. Пространства L_p . Полнота и некоторые другие свойства L_p . Интегралы Римана—Стилтьеса и Лебега—Стилтьеса

11. Несобственные кратные интегралы

Определение несобственного интеграла. Несобственные кратные интегралы. Исчерпание измеримыми множествами. Непрерывность интеграла как функции множества. Мажорантный признак сходимости несобственного интеграла. Пример расходящегося интеграла от знакопеременной функции. Замена переменных в несобственном интеграле. Несобственные интегралы, зависящие от параметра. Дифференцирование несобственного интеграла, зависящего от параметра. Интегрирование несобственного интеграла, зависящего от параметра.

12. Поверхности и дифференциальные формы в R^n

K-мерная поверхность (= k-мерное многообразие) в R^n . Атлас, гладкий атлас класса C^r . Ориентация поверхности. Ориентирующий репер, ориентирующий атлас. Ориентация (n - l)-мерной поверхности, индуцированная из R^n . Поверхность с краем. Понятие края, гладкость, ориентируемость поверхности с краем. Согласование ориентации поверхности и края. Площадь поверхности в евклидовом пространстве. Выражение площади (=k-мерного объема) через матрицу Грама. Дифференциальные формы. Кососимметрические операторы. Определение дифференциальной p-формы. Примеры. Координатная запись дифференциальной формы. Внешний дифференциал и его свойства. Функция переноса (= операция *). Дифференциальные формы на поверхностях.

13. Криволинейные и поверхностные интегралы

Интеграл от дифференциальной формы по ориентируемой поверхности. Площадь поверхности как интеграл от формы. Форма объема. Выражение формы объема в декартовых координатах. Основные интегральные формы анализа. Формула Грина. Формула Гаусса—Остроградского. Формула Стокса в R^3 . Теорема Стокса. Замкнутые и точные дифференциальные формы. Первая теорема (= лемма) Пуанкаре. Вторая теорема Пуанкаре. Гомологии и когомологии. Формула Стокса для цепей. Свойства интеграла от дифференциальной формы по цепи. Теоремы де Рама.

14. Равномерная сходимость и основные операции анализа

Равномерная сходимость семейства функций. Критерий Коши равномерная сходимости. Равномерная сходимость рядов. Критерий Коши равномерной сходимости ряда. Признаки Вейерштрасса и Абеля—Дирихле равномерной сходимости. Вторая теорема Абеля. Условия коммутирования двух предельных переходов. Непрерывность и предельный переход. Теорема Дини. Формула бинома Ньютона и равномерное приближение функции |x| полиномами на [-1,+1]. Интегрирование и предельный переход. Следствие для рядов. Дифференцирование и предельный переход. Следствие для рядов. Интегрирование и дифференцирование степенных рядов. Компактные и плотные подмножества пространства непрерывных функций. Теорема Арцела—Асколи. Теорема Вейерштрасса о равномерном приближении непрерывных функций полиномами. Алгебра функций. Не-

исчезающее и разделяющее точки семейство функций. Теорема Стоуна-Вейерштрасса.

15. Ряды Фурье

Линейные пространства со скалярным произведением. Линейно независимая, ортогональная и ортонормированная системы векторов. Примеры ортонормированных систем функций. Тригонометрические системы, полиномы Лежандра и Чебышева. Процесс ортогонализации Грамма-Шмидта. Коэффициенты Фурье. Ортогональное разложение вектора. Теорема Пифагора. Лемма об экстремальном свойстве коэффициентов Фурье. Неравенство Бесселя для ортонормированных и ортогональных систем. Ряд Фурье по ортогональной системе. Непрерывность скалярного произведения. Полные системы и условия полноты. Примеры. Условия полноты ортонормированной системы. Равенство Парсеваля. Базис в линейном пространстве. Соотношения между полнотой и базисностью системы в бесконечномерном пространстве. Базисность и полнота ортогональной системы. Необходимые и достаточные условия полноты в гильбертовом пространстве. Тригонометрические ряды Фурье. Вещественная и комплексная формы ряда Фурье. Формулы для коэффициентов Фурье и связь между ними. Сходимость тригонометрического ряда в среднем и равенство Парсеваля. Поточечная сходимость ряда Фурье. Лемма Римана. Ядро Дирихле и его свойства. Принцип локализации. Условие теоремы Дини. Ядро Фейера и его свойства. Теорема Фейера. Теорема Вейерштрасса о приближении непрерывной периодической функции тригонометрическими полиномами. Теорема о полноте тригонометрической системы. Дифференцирование и интегрирование рядов Фурье.

Библиографический список

- 1. Зорич В. А. Математический анализ. М.: Наука, 1981. Т. I-II.
- 2. Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления. М.: Наука, 1969. Т. I–II.
- 3. Дьяченко М. И., Ульянов П. Л. Мера и интеграл. М.: Факториал Пресс, 2002