Иерархические матрицы и их применения (часть II: применения)

> Ричард Гржибовский Университет Саарланда, Германия richards@num.uni-sb.de

> > НГУ, 03.04.2013

Повторение

- Уисленные примеры: интерполяция
- Метод Граничных Элементов (МГЭ)
 - Формулировка
 - Дискретизация
 - Повышение эффективности посредством *H*-матриц/AKA
- Численные примеры: МГЭ

Дано: Точки и значения функции

$$(x_i)_{i=1}^N \subset \mathbb{R}^2, \quad f(x_i) = f_i.$$

Найти: Интерполянт (или приближение) s(x) для f(x).

Решение: Интерполяция радиальными функциями (RBF-interpolation) Ищем s(x) в форме

$$s(x) = \sum_{i=1}^{N} a_i ||x - x_i||^2 \ln(||x - x_i||) + c \cdot X + c_3,$$

где a_i , $i = 1, \dots, N$, c_1 , c_2 , c_3 – неизвестные коэффициенты.

безсеточная интерполяция

Из условий интерполяции

$$\begin{cases} s(x_k) = f_k, & k = 1, \dots, N \\ \sum_{k=1}^{N} a_k (x_k \cdot e_j) = 0, & j = 1, \dots, 2 \\ \sum_{k=1}^{N} a_k = 0, \end{cases}$$

получаем систему линейных уравнений

$$\left(\begin{array}{cc} \Phi & Q \\ Q^T & 0 \end{array}\right) \left(\begin{array}{c} a \\ c \end{array}\right) = \left(\begin{array}{c} f \\ 0 \end{array}\right)$$

где

$$\Phi_{ij} = ||x_i - x_j||^2 \ln(||x_i - x_j||), \quad i, j = 1 \dots N$$

 $Q_{kj} = e_j \cdot x_k, \quad k = 1, \dots, N, \quad j = 1, 2$
 $Q_{k3} = 1, \quad k = 1, \dots, N$

Рассмотрим полные матрицы вида $A = \{A_{ij}\}_{i,i=1}^N$

С каким количеством неизвестных справляются ЭВМ?

Проблема объёма памяти: $Mem\left(A ight) =O\left(N^{2} ight)$							
Ν	10 ³	$5\cdot 10^3$	$10\cdot 10^3$	$20 \cdot 10^3$	$50 \cdot 10^3$		
Mem(A)	7.6 MB	190.7 MB	763 MB	3 GB	19 GB		

Проблема сложности вычисления:

Решая линейную систему итеративными методами, вычисление произведения полной матрицы на вектор имеет сложность $O(N^2)!$

・ 同 ト ・ ヨ ト ・ ヨ ト

Основная идея: малоранговая аппроксимация блоков

Если справедливо

$$K(x,y) \approx \sum_{k=1}^{r} u_k(x) v_k(y).$$

то $A \approx UV^T$ и $U \in \mathbb{R}^{N imes r}, \ V \in \mathbb{R}^{N imes r}.$ Таким образом,

 $\mathrm{Mem}\left(A\right) =2rN.$

Пример – разложение в ряд Тейлора

$$\mathcal{K}(x,y) = \sum_{\alpha:|\alpha| \leq p} \frac{1}{\alpha!} \partial_x^{\alpha} \mathcal{K}(x^*,y) (x-x^*)^{\alpha} + \mathcal{R}_r(x,y) dx^*$$

Если $||R_r|| \leq Cq^{r^{\alpha}} ||K||, r \to \infty$, и $C > 0, \alpha > 0, q > 0$, оно даёт малоранговыю аппроксимацию. (Fast Multipole Method, Rokhlin (85); Panel Clustering, Hackbusch & Nowak (89))

Определения

ADM: Два множества (кластера) *X* и *Y* называются *хорошо раздёнными* если

 $\min \{\operatorname{diam} X, \operatorname{diam} Y\} < \eta \operatorname{dist} (X, Y), \ \eta \in (0, 1).$

Соответствующий блок матрицы называется допустимым. **SMO**: Функция *K* называется асимптотически гладкой, если есть постоянные $C, \gamma > 0$ такие, что для $x \in X$, $y \in \mathbb{R}^3 \setminus \{x\}$ и $\alpha, \ |\alpha| > |\alpha_0|$

$$\partial_x^{\alpha} K(x,y) \leq Cq! \gamma^{|\alpha|} |x-y|^{-\alpha} |K(x,y)|.$$

Перенумерация точек, приводящая к тому, что матрица состоит только из допустимых и маленьких блоков, называется кластеризацией.

Метод Адаптивной Крестовой Аппроксимации (АКА) позволяет найти аппроксимацию с рангом $r = O(\varepsilon)$ допустимого блока размера $n \times n$ при затратах $O(n \ln^{\beta} n)$.

Свойства АКА

- АКА сходится для
 - матриц интерполяции/МГЭ Нюстрёма (Bebendorf '99)
 - 🧿 матриц МГЭ коллокации (Bebendorf, Rjasanow '03)
 - матриц МГЭ Галёркина (Bebendorf, GRZ '05)
- В АКА вычисляются далеко не все элементы матрицы!
- АКА алгебраический

Кластеризация

Можно перенумеровать точки/элементы так, чтобы все блоки в матрице были либо, допустимыми либо маленькими.

Обычно эта перенумерация производится иерархическим способом.

Создание \mathcal{H} -матрицы

- Построение дерева кластеров.
- Создание списков допустимых и маленьких блоков.
- АКА-аппроксимация допустимых блоков.

Комбинируя адаптивную крестовую аппроксимацию с иерархической кластеризацией создаётся блочно-малоранговое приближение к полной матрице.

Полная матрица


```
Построение: O(N^2)
```

```
Хранение: O(N^2)
```

```
Пример:

N = 3 · 10<sup>4</sup>,

выч. 900 · 10<sup>6</sup> элем. (450 sec.),

требуется 7 GB.
```


Комбинируя адаптивную крестовую аппроксимацию с иерархической кластеризацией создаётся блочно-малоранговое приближение к полной матрице.

H-matrix + (F)ACA

Построение: $O(N^2)$ Хранение: $O(N \log^2 N)$

Пример: *N* = 3 · 10⁴, выч. 900 · 10⁶ элем. (450 sec.), требуется 240 MB.

Комбинируя адаптивную крестовую аппроксимацию с иерархической кластеризацией создаётся блочно-малоранговое приближение к полной матрице.

H-matrix + ACA

Построение: $O\left(N\log^2 N\right)$ Хранение: $O\left(N\log^2 N\right)$

Пример: *N* = 3 · 10⁴, выч. 30 · 10⁶ элем. (15 sec.), требуется 240 MB.

Пример

Матрица Ф, N = 30727, $\varphi(r) = r^2 \ln r$ аппроксимант $\tilde{\Phi}$, точность $\varepsilon = 10^{-10}$

 $\mathsf{Mem}(ilde{\Phi}) = 427.2\mathsf{Mb}$ Степень сжатия $\mathsf{Mem}(ilde{\Phi})/\mathsf{Mem}(\Phi) = 0.059.$

Пример

Матрица Ф, N = 30727, $\varphi(r) = r^2 \ln r$ аппроксимант $\tilde{\Phi}$, точность $\varepsilon = 10^{-10}$

 $\mathsf{Mem}(ilde{\Phi}) = 427.2\mathsf{Mb}$ Степень сжатия $\mathsf{Mem}(ilde{\Phi})/\mathsf{Mem}(\Phi) = 0.059.$

Пример

Матрица Ф, $N=30727, \, \varphi\left(r
ight)=r^2\ln r$ аппроксимант $\tilde{\Phi}$, точность $arepsilon=10^{-10}$

æ

Интерполяция гладкой функции на N случайно распределённых точках в 2D.

Аппроксимация матриц разных размеров

N	h _X	Mem	rat.	compr. t.	GMRES	sol. t.
[10 ³]		[MB]	[%]	[s]	#	[s]
1	9.449E-04	2.5	33.80	<1	25	<1
5	9.635E-05	28.1	14.73	3	27	1
10	9.635E-05	69.2	9.07	6	29	4
25	2.602E-05	199.5	4.18	22	30	12
50	1.744E-05	466.4	2.44	55	33	33
100	1.379E-05	1122.4	1.47	141	40	110
500	2.193E-06	7540.8	0.39	1028	199	3693

Интерполяция гладкой функции на N случайно распределённых точках в 2D.

Аппроксимация матриц для разных РБФ

N	BF	Mem	rat.	time	N	BF	Mem	rat.	time.
[10 ³]		[MB]	[%]	[s]	[10 ³]		[MB]	[%]	[s]
25	TPS	199.5	4.18	22	100	TPS	1122.4	1.47	141
	MQS	189.2	3.96	23		MQS	968.7	1.26	105
	POW	195.5	4.10	24		POW	1067.5	1.39	137
	G	55.5	1.16	3		G	290.5	0.38	20
50	TPS	466.4	2.44	55	500	TPS	7540.8	0.39	1028
	MQS	431.0	2.26	65		MQS	5531.3	0.29	733
	POW	471.2	2.47	83		POW	6827.8	0.36	908
	G	117.6	0.61	8		G	1647.3	0.08	115

Интерполяция гладкой функции на N случайно распределённых точках в 2D.

Точность интерполяции (TPS сплайн порядка 2)

set	N	h _X	compr.	compr. t.	GMRES	sol. t.
			[%]	[s]	#	[s]
Α	10 201	6.0E-03	8.40	10	36	6
В	30727	4.3E-05	3.97	25	118	64
С	118 205	2.9E-04	1.35	220	141	413

резултаты совместной работы с М. Бамбахом (M. Bambach), Г. Хиртом (G. Hirt) из IBF Aachen.

M. Bambach, R. Grzibovski, G. Hirt, and S. Rjasanow. Adaptive Cross Approximation for surface reconstruction based on Radial Basis Functions.

Journal of Engineering Mathematics, 62(2):149–160, 2008.

Быстрый Метод Граничных Элементов для эластостатики

Обзор

- Интегральная формулировка краевой задачи линейной эластостатики
- Дискретизация методом Галёркина
- 3 Повышение эффективности посредством *H*-матриц/АКА
- Численные примеры

Уравнения линейной эластостатики

При воздействии внешних сил на упругое твёрдое тело $\Omega \subset \mathbb{R}^3$, каждая его точка будет сдвинута на вектор

$$\underline{u}: \Omega \mapsto \mathbb{R}^3.$$

Производные координат поля смещения формируют линейный тензор деформации Коши-Грина

$$e_{ij}\left(\underline{u},x\right) = \frac{1}{2}\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right)$$

Тензор напряжений вычисляют из тензора деформации с помощью закона Гука

$$\sigma_{ij}(\underline{u},x) = \sum_{k,l=1}^{3} c_{ijkl} e_{kl}(\underline{u},x).$$

Условие равновесия сил может быть выражено как

$$\operatorname{div} \sigma \left(\underline{u}, x \right) = \underline{0}.$$

Тензор 4-ранга c_{ijkl} обладает симметрией по первой и второй паре индексов. Он содержит независимых 21 величину. Эти величины удобно записать в виде симметричной матрицы размера 6 \times 6

$$\vec{e} = (e_{11}, e_{22}, e_{33}, 2e_{23}, 2e_{13}, 2e_{12})^{\top}, \vec{\sigma} = (\sigma_{11}, \sigma_{22}, \sigma_{33}, 2\sigma_{23}, 2\sigma_{13}, 2\sigma_{12})^{\top}, \mathcal{C}_{IJ} = c_{ijkl}, \text{ rge } \begin{cases} I = i \, \delta_{ij} + (1 - \delta_{ij}) \, (9 - i - j) \\ J = k \, \delta_{kl} + (1 - \delta_{kl}) \, (9 - k - l). \end{cases}$$

Закон Гука для однородного тела имеет вид

$$\vec{\sigma}(\underline{u},x) = C\vec{e}(\underline{u},x).$$

Тензор упругости ${\cal C}$ содержит всего ${\bf 2}$ независимых постоянных λ и μ

$$C = \begin{pmatrix} 2\mu + \lambda & \lambda & \lambda & \\ \lambda & 2\mu + \lambda & \lambda & 0 \\ \lambda & \lambda & 2\mu + \lambda & \\ & & \mu & \\ & 0 & & \mu & \\ & & & & \mu \end{pmatrix}$$

Условие равновесия сил $\operatorname{div} \sigma(\underline{u}, x) = \underline{0}$ имеет вид

 $\mu \Delta \underline{u}(x) + (\lambda + \mu) \operatorname{grad} \operatorname{div} \underline{u}(x) = \underline{0}.$

Смешенная краевая задача для системы Ламе

Гранично-интергальная формулировка задачи

Дифференциальный оператор эллиптичен, поэтому решение $\underline{u}(x)$ in Ω может быть записано в виде (третья формула Грина)

$$\underline{u}(x) = \int_{\Gamma} U^{*}(x,y) (\gamma_{1}\underline{u}) (y) ds_{y} - \int_{\Gamma} (\gamma_{1,y} U^{*}) (x,y) (\gamma_{0}\underline{u}) (y) ds_{y},$$

где через U^* обозначено фундаментальное решение системы Ламе (тензор Келвина)

$$U^{*}(x,y) = \frac{1}{8\pi E} \left(\frac{1+\nu}{1-\nu}\right) \left((3-4\nu)\frac{1}{|x-y|} I + \frac{(x-y)(x-y)^{\top}}{|x-y|^{3}} \right) ,$$

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)}, \ \ \mu = \frac{E}{2(1+\nu)},$$

Е модуль Юнга Е и ν коэффициент Пуассона.

Гранично-интергальная формулировка задачи

Дифференциальный оператор эллиптичен, поэтому решение $\underline{u}(x)$ in Ω может быть записано в виде (третья формула Грина)

$$\underline{u}(x) = \int_{\Gamma} U^*(x,y)(\gamma_1\underline{u})(y) \, ds_y - \int_{\Gamma} (\gamma_{1,y} U^*)(x,y)(\gamma_0\underline{u})(y) \, ds_y \, ,$$

Обозначим через $\underline{\tilde{u}}, \underline{\tilde{t}}, \underline{\tilde{g}}_N, \underline{\tilde{g}}_D$ продолжения функций $\gamma_0 \underline{u}, \gamma_1 \underline{u}, \underline{g}_N, \underline{g}_D$ на поверхности Г.

Симметричная формулировка

Вычислив следы третьей формулы Грина, получим симметричную формулировку (Sirtori):

Симметричная формулировка

Вычислив следы третьей формулы Грина, получим симметричную формулировку (Sirtori):

$$(V \underline{\tilde{t}})(x) - (K \underline{\tilde{u}})(x) = \left(\frac{1}{2}I + K\right) \underline{\tilde{g}_D}(x) - (V \underline{\tilde{g}_N})(x)$$
для $x \in \Gamma_D$,
 $(K' \underline{\tilde{t}})(x) + (D \underline{\tilde{u}})(x) = \left(\frac{1}{2}I - K'\right) \underline{\tilde{g}_N}(x) - (D \underline{\tilde{g}_D})(x)$ для $x \in \Gamma_N$,

~

$$\begin{array}{rcl} V & : & \left(H^{-1/2}(\Gamma)\right)^3 & \to & \left(H^{1/2}(\Gamma)\right)^3, \\ K & : & \left(H^{1/2}(\Gamma)\right)^3 & \to & \left(H^{1/2}(\Gamma)\right)^3, \\ K' & : & \left(H^{-1/2}(\Gamma)\right)^3 & \to & \left(H^{-1/2}(\Gamma)\right)^3, \\ D & : & \left(H^{1/2}(\Gamma)\right)^3 & \to & \left(H^{-1/2}(\Gamma)\right)^3. \end{array}$$

~

И

Вариационная формулировка Галёркина

Помножив ранее полученные уравнения на тестовые функции $\underline{\tau} \in \tilde{H}^{-1/2}(\Gamma_D)$ и $\underline{\nu} \in \tilde{H}^{1/2}(\Gamma_N)$ и проинтегрировав результат по Г получим

$$a(\tilde{u},\tilde{t};v,\tau) = f(v,\tau), \; \forall (v,\tau) \in \tilde{H}^{1/2}(\Gamma_N) \times \tilde{H}^{-1/2}(\Gamma_D)$$

Здесь

$$\begin{aligned} a(\tilde{u}, \tilde{t}; v, \tau) &= \langle V\tilde{t}, \tau \rangle_{L_{2}(\Gamma_{D})} - \langle K\tilde{t}, \tau \rangle_{L_{2}(\Gamma_{D})} + \\ &+ \langle K'\tilde{t}, v \rangle_{L_{2}(\Gamma_{N})} + \langle D\tilde{u}, v \rangle_{L_{2}(\Gamma_{N})} \end{aligned}$$

И

$$f(\mathbf{v},\tau) = \langle \left(\frac{1}{2}I + K\right) \tilde{g}_{D}, \tau \rangle_{L_{2}(\Gamma_{D})} + \langle V \tilde{g}_{N}, \tau \rangle_{L_{2}(\Gamma_{D})} + \langle \left(\frac{1}{2}I - K'\right) \tilde{g}_{N}, \mathbf{v} \rangle_{L_{2}(\Gamma_{N})} + \langle D \tilde{g}_{D}, \mathbf{v} \rangle_{L_{2}(\Gamma_{N})}.$$

ГИФ: дискретизация

 $\Gamma\approx\cup_{j=1}^N\tau_j$

Ищем неизвестные функции в форме

$$\underline{\tilde{u}}(x) = \sum_{\ell=1}^{M} \underline{u}_{\ell} \varphi_{\ell}(x), \quad \underline{\tilde{t}}(x) = \sum_{j=1}^{N} \underline{t}_{j} \psi_{j}(x)$$

$$\varphi_j(x) = \left\{ egin{array}{cc} \delta_{ij} & {
m for } x = x_i \ \kappa$$
-но линейна в других местах

$$\psi_\ell(x) = \left\{egin{array}{ccc} 1 & ext{для } x \in au_\ell \ 0 & ext{в других местах} \end{array}
ight.$$

,

3 🖌 🖌 3

Вариационная формулировка Галеркина приводит к системе линейных уравнений

$$\begin{pmatrix} \mathbb{V} & -\mathbb{K} \\ \mathbb{K}' & \mathbb{D} \end{pmatrix} \begin{pmatrix} \tilde{\mathbf{t}} \\ \tilde{\mathbf{u}} \end{pmatrix} = \begin{pmatrix} -\mathbb{V} & \frac{1}{2}\mathbb{M} + \mathbb{K} \\ \frac{1}{2}\mathbb{M} - \mathbb{K}' & -\mathbb{D} \end{pmatrix} \begin{pmatrix} \tilde{\mathbf{g}}_{\mathcal{N}} \\ \tilde{\mathbf{g}}_{\mathcal{D}} \end{pmatrix},$$

с матрицами:

 $\mathbb{V}[k,l] = \langle V(\psi_k \mathbf{i}), \psi_l \rangle_{L^2(\Gamma)}, \quad \mathbb{K}[k,j] = \langle (K\varphi_j \mathbf{i}), \psi_k \rangle_{L^2(\Gamma)} \\ \mathbb{K}'[j,k] = \langle K'(\psi_k \mathbf{i}), \varphi_j \rangle_{L^2(\Gamma)}, \quad \mathbb{D}[j,i] = \langle (D\varphi_i \mathbf{i}), \varphi_j \rangle_{L^2(\Gamma)}.$

где і $\in \mathbb{R}^{3 \times 3}$ единичная матрица, $\mathbb{V}[k, l] \in \mathbb{R}^3 \times \mathbb{R}^3$, $\mathbb{V} \in \mathbb{R}^{3N} \times \mathbb{R}^{3N}$.

Решаем систему

$$\left(\begin{array}{cc} \mathbb{V} & -\mathbb{K} \\ \mathbb{K}' & \mathbb{D} \end{array}\right) \left(\begin{array}{c} \tilde{\mathbf{t}} \\ \tilde{\mathbf{u}} \end{array}\right) = \left(\begin{array}{c} r_1 \\ r_2 \end{array}\right)$$

в два приёма

Изпользуется итеративный метод СГ с предобуславливанием: \mathbb{V} предобуславливаем \mathbb{D}_L and \mathbb{D} предобуславливаем \mathbb{V}_L^{lin} .

Свойства матриц \mathbb{V} , \mathbb{K} , \mathbb{K}' and \mathbb{D} :

 $\mathbb{V}[k, l] = \langle V(\psi_k \mathbf{i}), \psi_l \rangle_{L^2(\Gamma)}, \quad \mathbb{K}[k, j] = \langle (K\varphi_j \mathbf{i}), \psi_k \rangle_{L^2(\Gamma)} \\ \mathbb{K}'[j, k] = \langle K'(\psi_k \mathbf{i}), \varphi_j \rangle_{L^2(\Gamma)}, \quad \mathbb{D}[j, i] = \langle (D\varphi_i \mathbf{i}), \varphi_j \rangle_{L^2(\Gamma)}.$

(1) их элементы долго вчисляются,

(2) они болшого размера (кол-во строк/столбцов 3*M*, 3*N*),
(3) они полные.

Подход:

Смягчаем (1) и (2) интегрированием по частям.

Применяем технику *H*-матриц/АКА для устранения (2) и (3).

Удобная запись операторов К и К'

Избегаем явного вычисления элементов матриц \mathbb{K}, \mathbb{K}' и \mathbb{D} интегрируя по частям (Купрадзе, 79)

Здесь V_L , K_L и K_L' соответствующие потенциалы для оператора Лапласа

$$V_L u = \frac{1}{4\pi} \int_{\Gamma} \frac{1}{|x-y|} u(y) \, \mathrm{d}S_y$$

$$K_L u = \frac{1}{4\pi} \int_{\Gamma} \left[\frac{\partial}{\partial n_y} \frac{1}{|x-y|} \right] u(y) \, \mathrm{d}S_y$$

И

$$R_{ij} = n_j \frac{\partial}{\partial x_i} - n_i \frac{\partial}{\partial x_j}.$$

Удобная запись оператора D

Результат воздействия гиперсингулярного оператора выражен как

$$\begin{array}{ll} \langle Du, v \rangle &=& \displaystyle \int_{\Gamma} \int_{\Gamma} \frac{\mu}{4\pi \, |x - y|} \left(\sum_{k=1}^{3} \frac{\partial}{\partial S_{k}} u\left(y\right) \frac{\partial}{\partial S_{k}} v\left(x\right) \right) + \\ &+& \displaystyle (Rv)^{T}\left(x\right) \left(\frac{\mu}{2\pi \, |x - y|} I - 4\mu^{2} U^{*}\left(x, y\right) \right) \left(Ru\right)\left(y\right) + \\ &+& \displaystyle \sum_{i,j,k=1}^{3} \left(R_{kj} v_{i}\right)\left(x\right) \frac{1}{|x - y|} \left(R_{ki} u_{j}\right)\left(y\right) \mathrm{d}S_{x} \mathrm{d}S_{y} \end{array}$$

где

$$\frac{\partial}{\partial S_1} = R_{32}, \quad \frac{\partial}{\partial S_2} = R_{13}, \quad \frac{\partial}{\partial S_3} = R_{21}.$$

Для решения системы необходимо вычислить:

(1) \mathbb{V} – 7 эрмитовых матриц размера $N \times N$ (включая \mathbb{V}_L)

(2) \mathbb{K}_L – матрица размера $N \times M$

Для предобуслабливания

- (3) \mathbb{D}_L матрица размера N imes N matrix
- (4) \mathbb{V}_L^{lin} матрица размера $M \times M$ matrix

$$\mathbb{V} = C_1 \left(\begin{array}{ccc} \mathbb{V}_L & 0 & 0 \\ 0 & \mathbb{V}_L & 0 \\ 0 & 0 & \mathbb{V}_L \end{array} \right) + C_2 \left(\begin{array}{ccc} \mathbb{V}_1 & \mathbb{V}_2 & \mathbb{V}_3 \\ \mathbb{V}_2 & \mathbb{V}_4 & \mathbb{V}_5 \\ \mathbb{V}_3 & \mathbb{V}_5 & \mathbb{V}_6 \end{array} \right)$$

H-матрицы/АКА для МГЭ Галеркина: численные результаты

N	size [MB]	ratio	mem. inc.	
640	9.50	33.8%	_	Beam Example:
1 280	30.87	27.4%	3.250	Discretisation of the Single
2 560	90.37	20.1%	2.928	Lawar Detential matrix for the
5 1 2 0	239.49	13.3%	2.650	Layer Potential matrix for the
10 240	562.58	7.8%	2.349	Lame system.
20 480	1 291.78	4.5%	2.296	Size of the matrix is $3N \times 3N$
40 960	2 624.02	2.3%	2.031	A VIELS
	1		1	

H-матрицы/АКА для МГЭ Галеркина: численные результаты

ϵ	size [MB]	ratio
1E-2	458.01	1.59%
1E-3	633.51	2.20%
1E-4	848.91	2.95%
1E-5	1 291.78	4.49%

The size of compressed matrix V_h depending on approximation precision ϵ (N = 20480)

N	it. time [s]	inc.
640	0.034	-
1 280	0.128	3.802
2 560	0.357	2.787
5 1 2 0	0.930	2.604
10 240	2.229	2.395
20 480	4.905	2.201
40 960	10.659	2.173

The time needed for one iteration when inverting compressed V_h for $\epsilon = 10^{-5}$.

H-матрицы/АКА для МГЭ Галеркина: численные результаты

*) Corresponds $\sim 10^6$ FEM elements.

Эффективность МГЭ: смешанная задача

Bebendorf, M., Grzhibovskis, R.

Accelerating Galerkin BEM for linear elasticity using adaptive cross approximation.

Math. Methods Appl. Sci. 29 (2006), no. 14, 1721–1747.

Generate mesh sequences on the beam geometry for FEM and for BEM. Set such b.c., that the exact solution is known.

Mesh	BEM	BEM	h _B	FEM	FEM	h _F
	nodes	elem.		nodes	elem.	
1	322	640	1.250E-01	1377	1024	1.250E-01
2	642	1280	8.838E-02	3312	2662	9.091E-02
3	1282	2560	6.250E-02	9537	8192	6.250E-02
4	2562	5120	4.419E-02	27072	24334	4.348E-02
5	5122	10240	3.125E-02	70785	65536	3.125E-02
6	10242	20480	2.209E-02	192556	182250	2.222E-02
7	20482	40960	1.563E-02	545025	524288	1.563E-02

Сравнение точности и эффективности с МКЭ

Р. Гржибовский *Н*-матрицы/АКА:применения

Mesh	BEM	FEM	BEM	BEM	FEM
	elem.	elem.	iter.	sol.(s.)	sol.(s.)
1	640	1024	22	2	1
2	1280	2662	26	7	3
3	2560	8192	29	19	13
4	5120	24334	29	52	57
5	10240	65536	32	136	289
6	20480	182250	32	310	_
7	40960	524288	28	687	-

-

Applications

- FEM-BEM coupling for modeling deep rolling process. Joint work with V. Bäcker (WZL, RWTH Aachen).
- Estimation of effective elastic properties of composite materials.
 Joint work with S. Rjasanow (Univ. of Saarland),
 H. Andrä, A. Zemitis (ITWM Kaiserslautern).

Валцовка лопостей турбины

Process parameters:

rolling pressure tracks overlap roller ball-diam rolling speed material 150 bar 60% 6 mm 10 mm/s Ti-6Al-4V

Валцовка лопостей турбины

Process parameters:

rolling pressure tracks overlap roller ball-diam 6 mm rolling speed material

150 bar 60% 10 mm/s Ti-6Al-4V

Size: 5738×5738 Compression: 17%Gen. time: 2.5 min.

Size: 22952 × 22952 Compression: 7% Gen. time: 11.5 min.

Time dependent results

Моделирование вальцовки лопостей турбин.

 V. Bäcker, B. Feldhaus, R. Grzhibovskis, F. Klocke, S. Rjasanow, and C. Zeppenfeld.
 Coupled FE/BE-Analysis of the Deep Rolling Process.
 Advanced Technology of Plasticity, pages 299–310. Wiley-VCH Verlag, 2008.

Computational domain Ω with $N_{inc} = 3$ inclusions. Discretisations of Γ_0 (left) and Γ_{inc} (left). 6828 triangles in total.

Distribution of the traction module $|\gamma_1^{mat}\underline{u}|$ along Γ_{inc} (left), and along the part of Γ_0 , where x = 0 (right).

Computational domain Ω with $N_{inc} = 65$ inclusions. Discretisations of Γ_0 (left) and Γ_{inc} (right).

The H-matrix technique combined with the ACA procedure allows to approximate \mathbb{V}_m and \mathbb{K}_{Lm} by blockwise low rank matrices. \mathbb{V}_{Lm} , N = 26416, mem. = 289 MB, compression ratio=5.2%

Distribution of the traction module $|\gamma_1^{mat}\underline{u}|$ along deformed Γ_{inc} (left), and along the part of Γ_0 , where $x = x_{min}$ (right).

ref.	elem.	mem.	compr.	gen. t.	sol. t.	iter.	Ĩ
		(MB)	(%)	(s)	(s)		
1	1092	36.7	52.68	116	32	138	2346.2
2	1994	97.5	42.10	257	85	120	2374.4
3	4218	270.5	26.18	580	221	145	2399.9
4	8204	634.4	16.22	1161	700	188	2413.4
2x8	10036	886.1	15.28	1867	1181	235	2337.1
3x8	19932	2123.4	9.29	4036	3597	290	2362.2

Efficiency of the Galerkin BEM procedure. the ACA accuracy value is $\epsilon=10^{-4}$ for all experiments.

Расчет эффективных свойств композитных материалов

H. Andrä, R. Grzhibovskis, S. Rjasanow, and A. Zemitis. Boundary element method for calculation of effective elastic moduli in 3D linear elasticity. *Math. Methods Appl. Sci.*, 33(8):1021-1034, 2010

Springer monograph by S. Rjasanow and O. Steinbach

