Программа спецкурса «Алгебра-3»

Новосибирский государственный университет Кафедра Алгебры и математической логики

д.ф.-м.н. Колесников П. С. 2012-2013

Специальный курс «Алгебра-3» предназначен для студентов и аспирантов механикоматематического факультета, желающих освоить ряд вопросов теории групп, колец и полей, не входящих в стандартный обязательный курс высшей алгебры. Рассматриваемый в рамках курса материал носит общий характер и будет полезен начинающим исследователям в области алгебры, математической логики и информатики. Материал курса включает в себя определения, результаты и методы теории групп, полей и ассоциативных колец, знание которых необходимо в теории групп, теории алгоритмов, теории алгебр Ли и других областях алгебры. Основной целью освоения дисциплины является расширение базовых знаний о строении групп, колец и полей, а также о методах, применяемых в этих областях алгебры.

Целью курса является освоение следующих навыков

- умение ориентироваться в базовых понятиях и конструкциях теории групп, колец и полей, а также универсальной алгебры;
- знание основных теорем, относящихся к рассматриваемым областям;
- умение применять технические приемы в изученных областях алгебры;
- умение находить и использовать информацию по проблемам, рассмотренным в настоящем курсе, в печатных и электронных источниках

Спецкурс включает в себя следующие разделы

І. Алгебраические системы, многообразия

- 1. Алгебры и гомоморфизмы, операторы замыкания на множестве.
- 2. Свободные алгебры.
- 3. Тождества и многообразия, теорема Биркгофа о многообразиях.

II. Решетки

- 1. Основные понятия и базовые факты о решетках. Примеры решеток.
- 2. Дистрибутивные решетки, теорема о вложении дистрибутивной решетки в решетку множеств.
- 3. Модулярные решетки. Теорема о композиционных рядах.

- 4. Прямые разложения в модулярных решетках. Теорема Шмидта Оре.
- 5. Алгебраические решетки. Теорема Биркгофа Фринка.

III. Булевы алгебры

- 1. Конгруэнции булевых алгебр и булевы кольца.
- 2. Теорема Стоуна о строении конечно-порожденных булевых алгебр.
- 3. Фильтры и ультрафильтры на булевых алгебрах.
- 4. Булевы топологические пространства, двойственность Стоуна.

IV. Свободные (полу)группы и кольца

- 1. Конструкция свободной группы и свободного моноида. Конгруэнции полугрупп.
- 2. Определяющие соотношения для полугрупп, переписывающие правила, лемма о ромбе (Diamond lemma).
- 3. Свободная группа как образ свободной полугруппы. Определяющие соотношения для групп. Примеры: группа кватернионов и группа диэдра, HNN-расширения групп.
- 4. Теорема Нильсена Шрайера.
- 5. Свободное некоммутативное кольцо и свободная ассоциативная алгебра над полем. Определяющие соотношения.

V. Представления групп

- 1. Действие группы на множестве, линейные представления групп.
- 2. Неприводимые представления, теорема Машке и лемма Шура.
- 3. Характеры представлений групп, соотношения ортогональности.
- 4. Регулярный характер и его разложение.
- 5. Вычисление таблиц характеров неприводимых представлений для групп S_4, D_n и A_5 .

VI. Представления колец

- 1. Модули над ассоциативными кольцами и алгебрами. Артиновы и нетеровы кольца и модули, теорема Гильберта о базисе.
- 2. Модули над евклидовыми кольцами. Строение конечно-порожденных абелевых групп.
- 3. Радикал кольца. Теорема Веддерберна Артина.
- 4. Тензорное произведение простых центральных алгебр. Теорема Нетер Сколема.

- 5. Максимальные подполя. Теоремы Фробениуса и Веддерберна (о конечном теле).
- 6. Системы факторов, скрещенные произведения, группа Брауэра.

VII. Алгебры Ли. Теорема Пуанкаре — Биркгофа — Витта

- 1. Определение и примеры алгебр Ли.
- 2. Полупростота, разрешимость, нильпотентность.
- 3. Теоремы Энгеля, Ли и Мальцева.
- 4. Универсальные обертывающие и теорема Пуанкаре Биркгофа Витта.

Примеры задач для самостоятельной работы

- (1) Привести пример конечно-порожденной алгебры $\mathfrak A$ такой, что некоторый ее образ относительно гомоморфизма с нетривиальным ядром изоморфен самой $\mathfrak A$.
- (2) Пусть \mathfrak{A} алгебра над полем F. F-линейное отображение $d:\mathfrak{A}\to\mathfrak{A}$ называется $\partial u \phi \phi$ еренцированием алгебры \mathfrak{A} , если d(ab)=ad(b)+d(a)b для любых $a,b\in\mathfrak{A}$. Алгебра \mathfrak{A} называется $\partial u \phi \phi$ еренциально простой, если у нее есть такое дифференцирование d, что в \mathfrak{A} нет ненулевых собственных идеалов, инвариантных относительно J. Опишите конечномерные дифференциально простые алгебры над алгебраически замкнутым полем характеристики нуль.
- (3) Покажите, что для любого левого идеала I алгебры $\mathcal{R} = \mathbb{M}_n(D)$, где D алгебра с делением над полем F, существует такой элемент $e = e^2 \in \mathcal{R}$, что $I = \mathcal{R}e$.
- (4) Пусть D алгебра с делением над полем вещественных чисел $\mathbb R$ такая, что $\dim_{\mathbb R} D=4$. Покажите, что D изоморфна алгебре кватернионов

$$\mathbb{H} = \mathbb{R}1 + \mathbb{R}i + \mathbb{R}j + \mathbb{R}k,$$

где

$$i^2 = j^2 = k^2 = ijk = -1.$$

- (5) Пусть \mathfrak{A} простая центральная конечномерная алгебра над полем F. Докажите, что $\mathfrak{A} \otimes_F \mathfrak{A}^{op}$ изоморфна алгебре матриц над F.
- (6) При каких условиях на квадратичную форму f алгебра Клиффорда $\mathfrak{C}(n,f)$ над алгебраически замкнутым полем F является простой?

- (7) Приведите пример алгебры, не являющейся простой, но имеющей точное неприводимое представление (являющейся *примитивной*). Опишите коммутативные примитивные алгебры.
- (8) Доказать теорему Веддерберна для простой алгебры **3**, удовлетворяющей условию обрыва убывающих цепей левых идеалов: для любой последовательности

$$I_1 \supset I_2 \supset \ldots, I_k \triangleleft_l \mathfrak{A},$$

найдется n такое, что $I_n = I_{n+1} = \dots$

- (9) Доказать, что радикал Джекобсона J удовлетворяет формальным свойствам радикала, т.е. (1) $J(J(\mathfrak{A})) = J(\mathfrak{A}),$ (2) $J(\mathfrak{A}/J(\mathfrak{A})) = \{0\},$ (3) $(J(A) + I)/I \subseteq J(A/I)$ для любого $I \triangleleft \mathfrak{A}$.
- (10) Пусть $\mathfrak{A} \in \mathrm{Alg}_F$, $I \neq 0$ идеал в \mathfrak{A} . Показать, что \mathfrak{A} может быть изоморфно \mathfrak{A}/I . Предложить какие-нибудь достаточные условия на алгебру \mathfrak{A} , чтобы такого изоморфизма заведомо не существовало.
- (11) Пусть $\mathfrak{A} \in \mathrm{Alg}_F$ конечномерная алгебра без делителей нуля, а F алгебраически замкнутое поле. Показать, что $\mathfrak{A} = F$.
- (12) Доказать, что если $\mathfrak{A} \in \mathrm{Alg}_F$ простая алгебра, то алгебра матриц $M_n(\mathfrak{A})$ тоже простая.
- (13) Укажите базис алгебры Вейля W_n над полем F, где

$$W_n = \operatorname{Alg}_F^{\#} \langle x_1, \dots, x_n, y_1, \dots, y_n \mid S \rangle,$$

$$S = \{x_i x_j - x_j x_i, y_i y_j - y_j y_i, y_i x_j - x_j y_i - \delta_{ij} 1 : i, j = 1, \dots, n\},\$$

 δ_{ij} — символ Кронекера. Является ли эта алгебра простой?

- (14) Описать свободную алгебру многообразия с двумя ассоциативными бинарными операциями · и * такими, что $x_1*x_2 \approx x_2*x_1$, $(x_1*x_2)x_3 \approx (x_1x_3)*(x_2x_3)$ и $x_1(x_2*x_3) \approx (x_1x_2)*(x_1x_3)$.
- (15) Привести алгоритм решения проблемы равенства для полугруппы $\mathrm{Smg}\langle X \mid S \rangle$, где $X = \{x, y, z\}, S = \{\langle xy, yx \rangle, \langle yz, zy \rangle\}.$
- (16) Сформулировать и доказать аналог универсального свойства полугруппового кольца \mathfrak{A}^{\oplus} на кольцо $\mathbb{Z}\mathfrak{A}$.
- (17) Сформулировать строго и доказать утверждение: свободная группа получается из свободной полугруппы "добавлением единичного и обратных элементов".

- (18) Найти минимальное множество порождающих элементов и семейство определяющих соотношений для полугрупп $(\mathbb{N}, +)$, $(\mathbb{Z}, +)$ и для группы S_3 .
- (19) Доказать, что если $\operatorname{Gr}\langle X_1 \rangle \simeq \operatorname{Gr}\langle X_2 \rangle$, то $|X_1| = |X_2|$ (ранг свободной группы).
- (20) Доказать, что $Gr\langle x,y\rangle$ содержит свободную подгруппу любого не более чем счетного ранга.
- (21) Коммутантом группы G называется подгруппа [G,G], порожденная всевозможными элементами вида $xyx^{-1}y^{-1}$, $x,y\in G$. Указать какое-нибудь множество свободных порождающих для коммутанта свободной группы $G=\operatorname{Gr}\langle X\rangle$.
- (22) $\Gamma pynna\ \partial u \ni \partial pa\ D_n$ это группа всех движений (преобразований, сохраняющих расстояния и углы) плоскости, оставляющих на месте некоторый правильный n-угольник. Найти определяющие соотношения этой группы.
- (23) Найти определяющие соотношения для группы унитреугольных матриц размера 3×3 над кольцом \mathbb{Z} ,

$$UT_3 = \left\{ \begin{pmatrix} 1 & * & * \\ 0 & 1 & * \\ 0 & 0 & 1 \end{pmatrix} \right\}.$$

Список литературы

- 1. Ван дер Варден Б.Л. Алгебра. М.: Наука, 1976.
- 2. Винберг Э.Б. Курс алгебры. М.: Факториал Пресс, 2001.
- 3. Джекобсон Н. *Алгебры Ли*. М.: Мир, 1964.
- 4. Кострикин А.И. *Введение в алгебру. Ч. 3. Основные структуры алгебры.* М.: Физматлит, 2000.
 - 5. Ленг С. Алгебра. М.: Мир, 1968.
 - 6. Мальцев А.И. Алгебраические системы. М.: Наука, 1970.
 - 7. Скорняков Л.А. Элементы общей алгебры. М.: Наука, 1983.
 - 8. Херстейн И. Некоммутативные кольца. М.: Мир, 1972.